(Bináris) klasszifikációhoz kapcsolódó, web-en keresztül elérhető info-források
Néhány, Credit scoring elemzések implementációjára alkalmasnak tűnő, szabad forrású eszköz.
Források
R
How I created a package in R & published it on CRAN / GitHub (and you can too)?
Az R statisztikai programozási környezet:
Scikit-learn
Cheat Sheets for Machine Learning
Cheatsheet:Scikit Learn
A comparison of a several classifiers in scikit-learn on synthetic datasets
Logistic Regression 3-class Classifier
Plot classification probability
Multilabel classification
Gradient Boosted Regression Trees in scikit-learn
Machine Learning For Dummies
What-are-the-advantages-of-different-classification-algorithms
Gradient Boosting Out-of-Bag estimates
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
Pixel importances with a parallel forest of trees
Recognizing hand-written digits
Faces recognition example using eigenfaces and SVMs
Compressive sensing: tomography reconstruction with L1 prior (Lasso)
Libsvm GUI
Dataset loading utilities
x
x
x
1.1. Generalized Linear Models
1.1.11. Logistic regression
Practical Guide on Data Preprocessing in Python using Scikit Learn - Feature Scaling - Feature Standardization - Label Encoding - One-Hot Encoding - One-Hot Encoding
scikit-learn bevezető - egy osztályozási feladat megoldása logisztikus regresszióvalRandomized Logistic Regression
- 1.4. Support Vector Machines
1.4.1. Classification
1.4.2. Regression
1.4.3. Density estimation, novelty detection
1.4.4. Complexity
1.4.5. Tips on Practical Use
1.4.6. Kernel functions
1.4.7. Mathematical formulation 1.4.8. Implementation details
ANN Approach for Credit Risk - HiperparaméterekMATLAB programcsomagban
svm parameters
Neurális hálózatok - Informatikai Kar - Debreceni Egy. (SVM) - Kernel gépek vizsgálata
CREDIT–RISK SUPPORT VECTORS M. / MULTILAYER NEURAL NETW.
Support Vector Machines for Credit Scoring G-Drive
LS-SVMs for credit rating of banks ( ... that the LS-SVM would not improve upon the OLR classifier, the probability of observing the reported
performances is almost zero, meaning that the assumption of equal performances is not correct. dataset was retrieved from BankScope)
Kernel módszerek
scikit-learn-example-in-10-lines
CORPORATE
ftp://ftp.repec.org/opt/ReDIF/RePEc/ami/articles/11_4_5.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 93.6492&rep=rep1&type=pdf
- https://github.com/scikit-learn/scikit-learn/tree/master/examples/ensemble
- python - How to handle categorical variables in sklearn_(ROC)
GradientBoostingClassifier with a BaseEstimator in scikit-learn?
23gtakacs:adatelemzes_11.html
Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in python.
Ensemble Machine Learning COMPARATIONS with scikit-learn
GradientBoosting
AdaBoost Classifier, Gradient Boosting and Random Forest
Numerai intro with scikit-learn and pandas - step by step
python - How to handle categorical variables in sklearn
Testing for the gradient boosting module
User Churn Prediction: A Machine Learning Example
Testing for the gradient boosting module
Mi az a krosszvalidáció?
Decision trees and boosting
Getting Started with Data Science – Python
Gradient Boosted Regression Trees
Understanding Gradient Boosting, Part 1
-
- 1.11.2. Forests of randomized trees
1.11.2.1. Random Forests
1.11.2.2. Extremely Randomized Trees
1.11.2.3. Parameters
1.11.2.4. Parallelization
1.11.2.5. Feature importance evaluation
1.11.2.6. Totally Random Trees Embedding - sklearn.ensemble.RandomForestClassifier.
- Véletlen erd̋ok -Szabó Adrienn
- Döntési fa,Véletlen erdő, Előrecsatolt többrétegű neuronháló,SVM, Kernel „trükk”.
- Együttes módszerek
- docplayer-Random-forests-veletlen-erdok
- http://www.sze.hu/~gtakacs/oktatas/adatelemzes/adatelemzes_11.html
- http://r-projekt.hu/letoltes
- Adatbányászati esettanulmányok
- 1.11.3. AdaBoost
AdaBoost tanuló algoritmus
Rob Schapire: AdaBoost
- 1.11.4. Gradient Tree Boosting
1.11.4.1. Classification
1.11.4.2. Regression
1.11.4.3. Fitting additional weak-learners
1.11.4.4. Controlling the tree size
1.11.4.5. Mathematical formulation
1.11.4.6. Regularization
1.11.4.7. Interpretation
- 1.11.5. VotingClassifier
sklearn.ensemble
sk
learn.ensemble
.GradientBoostingClassifier- Modellek kombinálása (forest eljárások) [Hidasi]
Gradient Boosted Regression Trees -
Adaboost and forward stagewise additive modeling
- Ensemble Learning és Scikit-learn
Matlab támogatás
Moduláris háló kialakítása a tanító mintakészlet módosításával
Machine-learning-in-R-for-credit- scoring
Recent Methods from Statistics and Machine Learning for Credit Scoring
- 1.11.2. Forests of randomized trees
- 1.13. Feature selection
1.13.1. Removing features with low variance
1.13.2. Univariate feature selection
1.13.3. Recursive feature elimination
1.13.4. Feature selection using SelectFromModel
1.13.5. Feature selection as part of a pipeline - 1.17. Neural network models (supervised)
Deep Learning
- Neural Network wrapper for pylearn2 compatible with scikit-learn.
- Building a Neural Net To Predict Loan Default - Tensorflow
- http://dlib.net/
- TensorFlow - GPU desktop, server, mobile device, single API - Python lib
- Convolutional Neural Networks for Visual recognition
- Understanding Convolutional Neural Networks for NLP
- Learning AI if You Suck at Math
- ImageNet Classification with Deep Convolutional Neural Networks
- Deep Learning - MIT Press book
- The Loss Surfaces of Multilayer Networks
- Regularization
- http://ml4a.github.io/classes/itp-S16/
- https://plus.google.com/u/0/collection/8n2UX?cfem=1
Kaggle Datasets
Előfeldolg - Osztályozók és kiértékelésük - Weka
https://www.researchgate.net/
credit scoring esetén fellépő szelekciós torzítás
http://phd.lib.uni-corvinus.
http://scikit-learn.org/stable/
https://www.quora.com/What-is-the-best-algorithm-for-automatically-calculating-a-credit-score
Tutorial – Data Science at Command Line with R & Python (Scikit Learn)
A Beginner's Guide to Neural Networks with Python and SciKit Learn 0.18!
INTERPRETÁLHATÓSÁG
SPARK
21 Steps to Get Started with Apache Spark using Scala
Kafka
Előadás (frissített) - Budapesti Műszaki és Gazdaságtudományi Egye
Az Apache Kafka használatának első lépései a HDInsightban
Apache Kafka for HDInsight | Microsoft Azure
Big Data Learning Path for all Engineers and Data Scientists out there
Saját analitikával a LinkedIn is jobban muzsikál
http://adatbanyaszat.blog.hu/
http://python.hu/magyar-nyelvu-dokumentaciok
http://kreativ.hu/cikk/a_google_analytics_meg_nem_big_data
https://prezi.com/lyudnveyjfp6/nagy-adathalmazok-kezelese-hadoop-technologiakkal/Elvárások:
Risk Report
Nincsenek megjegyzések:
Megjegyzés küldése